

2025 Great Lakes Microplastics Summit

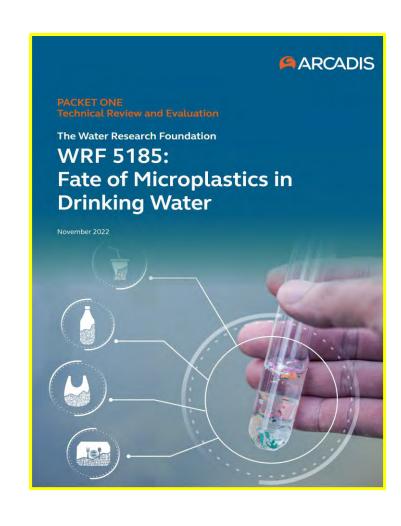
VIRTUAL EVENT | OCTOBER 22

Profiling WTPs for Microplastics Removal

Presenter Bio

Brent Alspach holds both BS and MS degrees in Civil and Environmental Engineering from Cornell University. Brent joined Arcadis in 1997 and is a Vice President & the Director of Applied Research. He currently serves on the AWWA Technical and Education Council, as well as on the editorial boards for *Opflow* and *AWWA Water Science*. He is the PI / Co-PI on three Water Research Foundation projects on microplastics in drinking water, a subject on which he recently testified before the US Congress. His contributions to the water field were honored with the WRF's 2025 Pankaj Parekh Research Innovation Award.

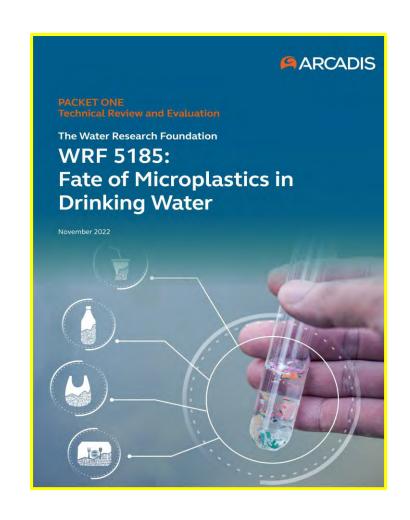
Profiling WTPs for Microplastics Removal


Presenter Bio

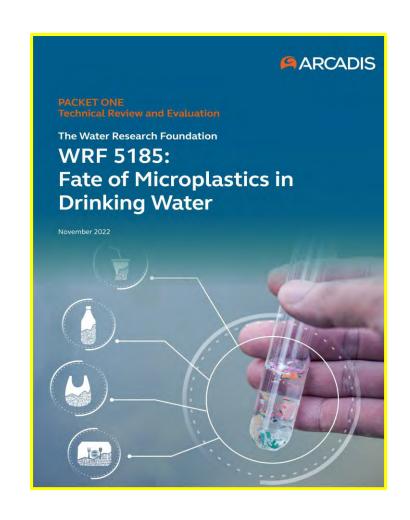
Brent Alspach holds both BS and MS degrees in Civil and Environmental Engineering from Cornell University. Brent joined Arcadis in 1997 and is a Vice President & the Director of Applied Research. He currently serves on the AWWA Technical and Education Council, as well as on the editorial boards for *Opflow* and *AWWA Water Science*. He is the PI / Co-PI on three Water Research Foundation projects on microplastics in drinking water, a subject on which he recently testified before the US Congress. His contributions to the water field were honored with the WRF's 2025 Pankaj Parekh Research Innovation Award.

Profiling WTPs for Microplastics Removal

Brent Alspach, Principal Investigator


VP & Director of Applied Research

Dr. Nicole Fahrenfeld, Co-PIProfessor



WRF 5185: Fate of MPs in Drinking WTPs

WRF 5185: Fate of MPs in Drinking WTPs

WRF 5185: Fate of MPs in Drinking WTPs

WRF 5185 Collaboration Team

Sydney Samples, RPM Valerie Roundy, Coordinator

Project Advisory Committee

Cayla Cook, Hazen & Sawyer
Andrew DeGraca, SFPUC
Peter Goodmann, Louisville Water Co.
Lucy Li, MWDSC

Expert Advisory Panel

Dr. Scott Coffin / Dr. Hélène Baribeau,

California SWRCB

Alignment with CA Monitoring Program

Shelly Walther,

LA County Sanitation Districts

Sampling and Analytical Methods

Dr. Vijay Bhatia,

Philadelphia Water Dept. Water Utility Perspective

Principal Investigator

Brent Alspach, PE, BCEE

Co-Principal Investigator

Nicole Fahrenfeld, PhD

ARCADIS

Brent Alspach, PE, BCEE Alma Beciragic, PhD Francesca DePrima

Nicole Fahrenfeld, PhD Georgia Arbuckle-Keil, PhD Jenny Cruz

Participating Utilities

American Water

City of Minneapolis

City of Sacramento

Dallas Water Utilities

Fairfax Water

Greater Cincinnati WW

Louisville Water Company

Manitowoc Public Utilities

Middlesex Water Company

Milwaukee Water Works

MWA of Westmoreland County

Orange County Utilities

Philadelphia Water Dept.

San Jose Water

So. Nevada Water Authority

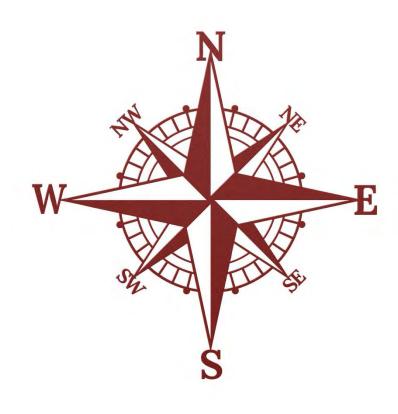
Valley Water

Rising consumer concern over microplastics has prompted studies of occurrence in both raw and treated drinking water supplies, but treatment plants exhibit varying degrees of removal, and individual processes are not well-characterized. Thus, the objective of this research is to help close this knowledge gap by profiling key unit processes and correlating treatment efficacy with microplastics attributes, water quality data, design criteria, and operational parameters, thereby informing facility optimization.

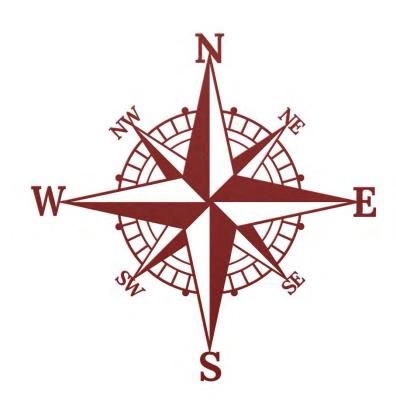
Rising consumer concern over microplastics has prompted studies of occurrence in both raw and treated drinking water supplies, but treatment plants exhibit varying degrees of removal, and individual processes are not well-characterized. Thus, the objective of this research is to help close this knowledge gap by profiling key unit processes and correlating treatment efficacy with microplastics attributes, water quality data, design criteria, and operational parameters, thereby informing facility optimization.

Rising consumer concern over microplastics has prompted studies of occurrence in both raw and treated drinking water supplies, but treatment plants exhibit varying degrees of removal, and individual processes are not well-characterized. Thus, the objective of this research is to help close this knowledge gap by profiling key unit processes and correlating treatment efficacy with microplastics attributes, water quality data, design criteria, and operational parameters, thereby informing facility optimization.

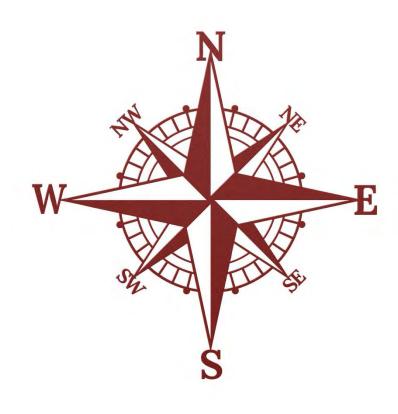
Presentation Objective


Educate about the challenges of understanding and characterizing microplastics removal

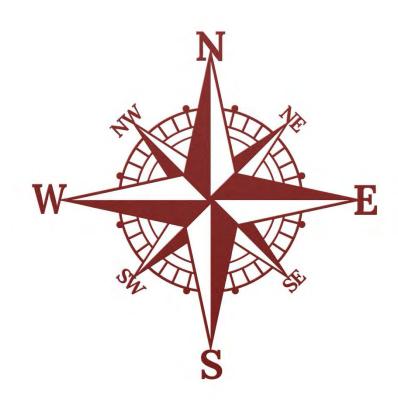
Agency	State	Source Water(s)	Treatment Facility Unit Processes
American Water	NJ	Canoe Brook Reservoir & Wells	Coagulation; flocculation, dissolved air flotation, media filters, chlorination
City of Minneapolis	MN	Mississippi River	Coagulation; flocculation, settling; MF & media filters (in parallel), chlorination
City of Sacramento	CA	Sacramento River	Coagulation; flocculation; settling; media filters, chlorination
Dallas Water Utilities	TX	Multiple lakes and rivers	Ozone, coagulation, flocculation, settling, biofiltration, chlorination
Fairfax Water	VA	Potomac River	Coagulation, flocculation, settling, ozone, media filters, chlorination
Greater Cincinnati Water Works	ОН	Ohio River	Coagulation, flocculation, settling (2-stage), biofiltration, GAC, UV, chlorination
Louisville Water Company	KY	Ohio River	Coagulation, flocculation, settling, chlorination, lime softening, media filters
Manitowoc Public Utilities	WI	Lake Michigan	MF (direct filtration from Lake Michigan), chlorination
Middlesex Water Company	NJ	Delaware & Raritan Canal	Coagulation, flocculation, high-rate clarifiers, ozone, media filters
Milwaukee Water Works	WI	Lake Michigan	Ozone, coagulation, flocculation, settling, media filters, chlorination
MA of Westmoreland County	PA	Youghiogheny River	Coagulation; flocculation; settling; media filters, chlorination
Orange County Utilities	FL	Floridan Aquifer	Forced draft aeration, settling, chlorination
Philadelphia Water Dept.	PA	Delaware River	Coagulation; flocculation; settling; media filters, chlorination
San Jose Water Company	CA	Los Gatos Watershed	Coagulation; flocculation; settling; UF, chlorination
Southern Nevada Water Authority	NV	Lake Mead	Ozone, coagulation flocculation, media filters, chlorination
Valley Water	CA	Sac San Joaquin Delta	Coagulation, flocculation, settling, ozone, biofiltration, chlorination



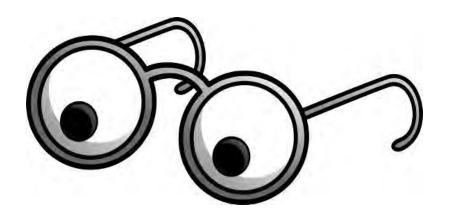
Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta



Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta



Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta


Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta

Importance...?

Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta

Optics

Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta

Groundwater Supply

Agency	State	Source Water(s)
American Water	NJ	Canoe Brook Reservoir & Wells
City of Minneapolis	MN	Mississippi River
City of Sacramento	CA	Sacramento River
Dallas Water Utilities	TX	Multiple lakes and rivers
Fairfax Water	VA	Potomac River
Greater Cincinnati Water Works	ОН	Ohio River
Louisville Water Company	KY	Ohio River
Manitowoc Public Utilities	WI	Lake Michigan
Middlesex Water Company	NJ	Delaware & Raritan Canal
Milwaukee Water Works	WI	Lake Michigan
MA of Westmoreland County	PA	Youghiogheny River
Orange County Utilities	FL	Floridan Aquifer
Philadelphia Water Dept.	PA	Delaware River
San Jose Water Company	CA	Los Gatos Watershed
Southern Nevada Water Authority	NV	Lake Mead
Valley Water	CA	Sac San Joaquin Delta

Agency	State	Source Water(s)	Treatment Facility Unit Processes
American Water	NJ	Canoe Brook Reservoir & Wells	Coagulation; flocculation, dissolved air flotation, media filters, chlorination
City of Minneapolis	MN	Mississippi River	Coagulation; flocculation, settling; MF & media filters (in parallel), chlorination
City of Sacramento	CA	Sacramento River	Coagulation; flocculation; settling; media filters, chlorination
Dallas Water Utilities	TX	Multiple lakes and rivers	Ozone, coagulation, flocculation, settling, biofiltration, chlorination
Fairfax Water	VA	Potomac River	Coagulation, flocculation, settling, ozone, media filters, chlorination
Greater Cincinnati Water Works	OH	Ohio River	Coagulation, flocculation, settling (2-stage), biofiltration, GAC, UV, chlorination
Louisville Water Company 1 2 F	ačili	Ohio River	Coagulation, flocculation, settling, chlorination, lime softening, media filters
Manitowoc Public Utilities	WI	Lake Michigan	MF (direct filtration from Lake Michigan), chlorination
Middlesex Water Company	NJ	Delaware & Raritan Canal	Coagulation, flocculation, high-rate clarifiers, ozone, media filters
Milwaukee Water Works	WI	Lake Michigan	Ozone, coagulation, flocculation, settling, media filters, chlorination
MA of Westmoreland County	PA	Youghiogheny River	Coagulation; flocculation; settling; media filters, chlorination
Orange County Utilities	FL	Floridan Aquifer	Forced draft aeration, settling, chlorination
Philadelphia Water Dept.	PA	Delaware River	Coagulation; flocculation; settling; media filters, chlorination
San Jose Water Company	CA	Los Gatos Watershed	Coagulation; flocculation; settling; UF, chlorination
Southern Nevada Water Authority	NV	Lake Mead	Ozone, coagulation flocculation, media filters, chlorination
Valley Water	CA	Sac San Joaquin Delta	Coagulation, flocculation, settling, ozone, biofiltration, chlorination

Agency	State	Source Water(s)	Treatment Facility Unit Processes
American Water	NJ	Canoe Brook Reservoir & Wells	Coagulation; flocculation, dissolved air flotation, media filters, chlorination
City of Minneapolis	MN	Mississippi River	Coagulation; flocculation, settling; MF & media filters (in parallel), chlorination
City of Sacramento	CA	Sacramento River	Coagulation; flocculation; settling; media filters, chlorination
Dallas Water Utilities	TX	Multiple lakes and rivers	Ozone, coagulation, flocculation, settling, biofiltration, chlorination
Fairfax Water Media	Filtra	etion Potomac River	Coagulation, flocculation, settling, ozone, media filters, chlorination
Greater Cincinnati Water Works	ОН	Ohio River	Coagulation, flocculation, settling (2-stage), biofiltration, GAC, UV, chlorination
Louisville Water Company 13	acili	Chio River	Coagulation, flocculation, settling, chlorination, lime softening, media filters
Manitowoc Public Utilitie(includ	ing ^v bio	filters) Lake Michigan	MF (direct filtration from Lake Michigan), chlorination
Middlesex Water Company	NJ	Delaware & Raritan Canal	Coagulation, flocculation, high-rate clarifiers, ozone, media filters
Milwaukee Water Works	WI	Lake Michigan	Ozone, coagulation, flocculation, settling, media filters, chlorination
MA of Westmoreland County	PA	Youghiogheny River	Coagulation; flocculation; settling; media filters, chlorination
Orange County Utilities	FL	Floridan Aquifer	Forced draft aeration, settling, chlorination
Philadelphia Water Dept.	PA	Delaware River	Coagulation; flocculation; settling; media filters, chlorination
San Jose Water Company	CA	Los Gatos Watershed	Coagulation; flocculation; settling; UF, chlorination
Southern Nevada Water Authority	NV	Lake Mead	Ozone, coagulation flocculation, media filters, chlorination
Valley Water	CA	Sac San Joaquin Delta	Coagulation, flocculation, settling, ozone, biofiltration, chlorination

Agency	State	Source Water(s)	Treatment Facility Unit Processes
American Water	NJ	Canoe Brook Reservoir & Wells	Coagulation; flocculation, dissolved air flotation, media filters, chlorination
City of Minneapolis	MN	Mississippi River	Coagulation; flocculation, settling; MF & media filters (in parallel), chlorination
City of Sacramento	CA	Sacramento River	Coagulation; flocculation; settling; media filters, chlorination
Dallas Water Utilities	TX	Multiple lakes and rivers	Ozone, coagulation, flocculation, settling, biofiltration, chlorination
Fairfax Water	VA	Potomac River	Coagulation, flocculation, settling, ozone, media filters, chlorination
Greater Cincinnati Water Works	Hat	Ohio River	Coagulation, flocculation, settling (2-stage), biofiltration, GAC, UV, chlorination
Louisville Water Company 15	ačili	Ohio River	Coagulation, flocculation, settling, chlorination, lime softening, media filters
Manitowoc Public Utilities	WI	Lake Michigan	MF (direct filtration from Lake Michigan), chlorination
Middlesex Water Company	NJ	Delaware & Raritan Canal	Coagulation, flocculation, high-rate clarifiers, ozone, media filters
Milwaukee Water Works	WI	Lake Michigan	Ozone, coagulation, flocculation, settling, media filters, chlorination
MA of Westmoreland County	PA	Youghiogheny River	Coagulation; flocculation; settling; media filters, chlorination
Orange County Utilities	FL	Floridan Aquifer	Forced draft aeration, settling, chlorination
Philadelphia Water Dept.	PA	Delaware River	Coagulation; flocculation; settling; media filters, chlorination
San Jose Water Company	CA	Los Gatos Watershed	Coagulation; flocculation; settling; UF, chlorination
Southern Nevada Water Authority	NV	Lake Mead	Ozone, coagulation flocculation, media filters, chlorination
Valley Water	CA	Sac San Joaquin Delta	Coagulation, flocculation, settling, ozone, biofiltration, chlorination

Process	No.	Key Context / Notes
Conventional Pretreatment	12	Wide variety of coagulants and doses
Dissolved Air Flotation (DAF)	1	
High-Rate Clarification	1	
Forced Draft Aeration	1	
Ozone	6	Potential for microplastic embrittlement?
Media Filtration	10	Various types and configurations
Biofiltration	3	
Microfiltration (MF)	2	Nominal pore size = 0.1 µm (100 nm barrier)
Ultrafiltration (UF)	1	Nominal pore size = 0.01 µm (10 nm barrier)
Granular Activated Carbon (GAC)	1	
Lime Softening	1	
UV Disinfection	1	Potential for microplastic embrittlement?
Chlorination	15	Potential for microplastic embrittlement?

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks
- Matrix spikes

Process	No.	Key Context / Notes
Conventional Pretreatment	12	Wide variety of coagulants and doses
Dissolved Air Flotation (DAF)	1	
High-Rate Clarification	1	
Forced Draft Aeration	1	
Ozone	6	Potential for microplastic embrittlement?
Media Filtration	10	Various types and configurations
Biofiltration	3	
Microfiltration (MF)	2	Nominal pore size = 0.1 µm (100 nm barrier)
Ultrafiltration (UF)	1	Nominal pore size = 0.01 µm (10 nm barrier)
Granular Activated Carbon (GAC)	1	
Lime Softening	1	
UV Disinfection	1	Potential for microplastic embrittlement?
Chlorination	15	Potential for microplastic embrittlement?

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

* Not included

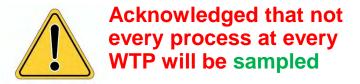
Process	No.	Key Context / Notes
Conventional Pretreatment	12	Wide variety of coagulants and doses
Dissolved Air Flotation (DAF)	1	
High-Rate Clarification	1	
Forced Draft Aeration	1	
Ozone	6	Potential for microplastic embrittlement?
Media Filtration	10	Various types and configurations
Biofiltration	3	
Microfiltration (MF)	2	Nominal pore size = 0.1 µm (100 nm barrier)
Ultrafiltration (UF)	1	Nominal pore size = 0.01 µm (10 nm barrier)
Granular Activated Carbon (GAC)	1	
Lime Softening	1	
UV Disinfection	1	Potential for microplastic embrittlement?
Chlorination	15	Potential for microplastic embrittlement?

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

* Not included


Acknowledged that not every process at every WTP will be sampled

Process	No.	Key Context / Notes
Conventional Pretreatment	12	Wide variety of coagulants and doses
Dissolved Air Flotation (DAF)	1	
High-Rate Clarification	1	
Forced Draft Aeration	1	
Ozone	6	Potential for microplastic embrittlement?
Media Filtration	10	Various types and configurations
Biofiltration	3	
Microfiltration (MF)	2	Nominal pore size = 0.1 µm (100 nm barrier)
Ultrafiltration (UF)	1	Nominal pore size = 0.01 µm (10 nm barrier)
Granular Activated Carbon (GAC)	1	
Lime Softening	1	
UV Disinfection	1	Potential for microplastic embrittlement?
Chlorination	15	Potential for microplastic embrittlement?

Potential Constraints

- No sample tap
- No access to prescribed sample location
- Time / resource limits
- Others...?

Presentation Objective

Educate about the challenges of understanding and characterizing microplastics removal

Presentation Objective

Educate about the challenges of understanding and characterizing microplastics removal

Dissecting the Difficulties

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

Dissecting the Difficulties

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

Sampling Challenges

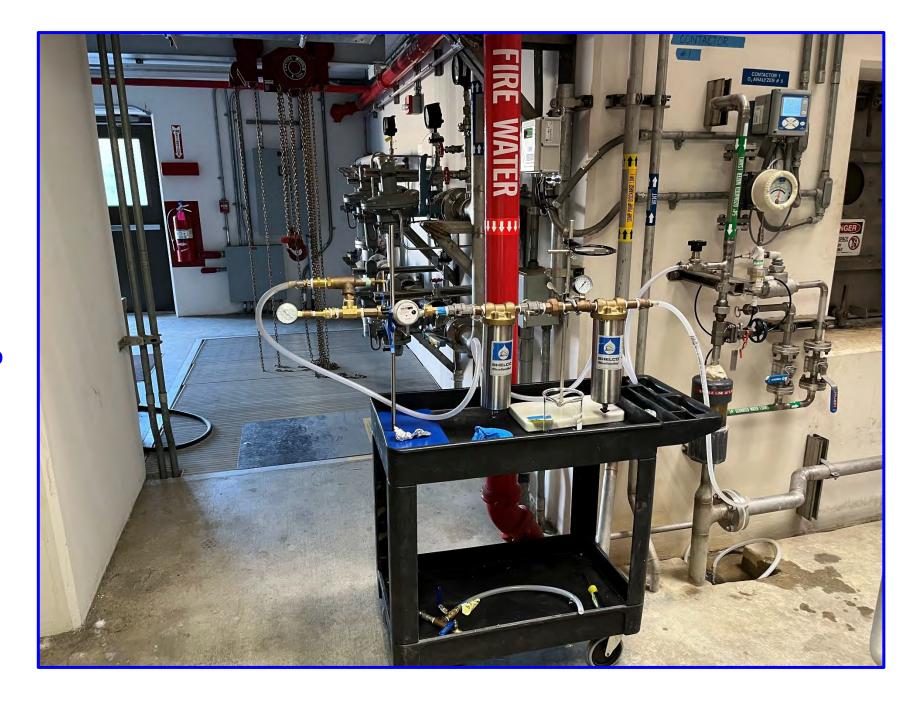
- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train

Sampling Challenges

- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train
- Determining appropriate sampling depth (as applicable)

Sampling Challenges

- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train
- Determining appropriate sampling depth (as applicable)
- Unwieldy apparatus for field filtration (current best practice)



Microplastics field filtration sampling apparatus assembled in a WTP lab

Apparatus
deployed for
sampling in a
designated WTP
location

- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train
- Determining appropriate sampling depth (as applicable)
- Unwieldy apparatus for field filtration (current best practice)
- Specialized training required:
 - Working with the apparatus
 - QA/QC practices

- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train
- Determining appropriate sampling depth (as applicable)
- Unwieldy apparatus for field filtration (current best practice)
- Specialized training required:
 - Working with the apparatus
 - QA/QC practices
- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks

- No sample tap(s) associated with target location(s) in the treatment train
- No access to target sampling location(s) in the treatment train
- Determining appropriate sampling depth (as applicable)
- Unwieldy apparatus for field filtration (current best practice)
- Specialized training required:
 - Working with the apparatus
 - QA/QC practices
- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Time required to collect appropriate sample volume

Unwieldy apparatus for field filtration (current best practice)

QA/QC Practices:

- Limit use of plastic materials, components, and equipment
- Wear clothes made of non-synthetic textiles
- Prevent potential for deposition of ambient airborne microplastics
- Incorporate strategic blanks

Reminiscent of early *Cryptosporidium* field filtration sampling...

Unwieldy apparatus for field filtration (current best practice)

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks

Reminiscent of early *Cryptosporidium* field filtration sampling...

Unwieldy apparatus for field filtration (current best practice)

...combined with rigorous PFAS-scale QA/QC requirements.

QA/QC Practices:

- Limit use of plastic materials, components, and equipment
- Wear clothes made of non-synthetic textiles
- Prevent potential for deposition of ambient airborne microplastics
- Incorporate strategic blanks

Dissecting the Difficulties

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Time- and labor-intensive

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

* Not included

Acknowledged that not every process at every WTP will be sampled

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

Assume 4 hours per sample for analysis

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

Assume 4 hours per sample for analysis

Probably an ambitious assumption (on average)

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

Assume 4 hours per sample for analysis

- QA/QC Practices:
 - Limit use of plastic materials, components, and equipment
 - Wear clothes made of non-synthetic textiles
 - Prevent potential for deposition of ambient airborne microplastics
 - Incorporate strategic blanks
- Sample prep ("clean-up")[‡]
- Particulate counting[‡]

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

* Not included

Static exercise that cannot account for the wide potential for variability

Sample Regime

- 16 water treatment plants
- 13 unit processes
- Strategic replicates
- Blanks*
- Matrix spikes*

153 Samples Prescribed

- **✓** Time-intensive
- **✓** Cost-intensive

Dissecting the Difficulties

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

Dissecting the Difficulties

Process Design Criteria & Information

3. Extensive array of variables

Process Operational Parameters

Water Quality Parameters

Unit	Operational	Design Criteria /	Water Quality Parameters
Process(es)	Parameters	Information	
Conventional Pretreatment	 Coagulant Type Coagulant Dose Polymer Use (Y/N) Polymer Type Polymer Dose Zeta Potential Pre-Oxidant Use Pre-Oxidant Type Pre-Oxidant Dose 	 Mixing Intensity (G) Detention Time Settling Rate 	 Coagulation pH Humic Acid Calcium Temperature UV254 Specific UV Abs. (SUVA)

Unit Process(es)	Operational Parameters	Design Criteria / Information	Water Quality Parameters
Conventional Pretreatment	 Coagulant Type Coagulant Dose Polymer Use (Y/N) Polymer Type Polymer Dose Zeta Potential Pre-Oxidant Use Pre-Oxidant Type Pre-Oxidant Dose 	 Mixing Intensity (G) Detention Time Settling Rate 	 Coagulation pH Humic Acid Calcium Temperature UV254 Specific UV Abs. (SUVA)
Dissolved Air Flotation	 Bubble Surface Modification Agents Air Saturation Pressure 	Mixing Intensity (G)Detention TimeSettling Rate	

Unit Process(es)	Operational Parameters	Design Criteria / Information	Water Quality Parameters
Media Filtration	Pre-Oxidant UsePre-Oxidant TypePre-Oxidant Dose	 Filter Media Type(s) Filter Bed Depth(s) Filter Bed L/d Ratio Filtration Rate Abiotic vs. Biological 	

Unit Process(es)	Operational Parameters	Design Criteria / Information	Water Quality Parameters
Media Filtration	Pre-Oxidant UsePre-Oxidant TypePre-Oxidant Dose	 Filter Media Type(s) Filter Bed Depth(s) Filter Bed L/d Ratio Filtration Rate Abiotic vs. Biological 	
Membrane Filtration	Backwash PracticesChemical Cleaning Practices	Pore Size Distribution	

Unit Process(es)	Operational Parameters	Design Criteria / Information	Water Quality Parameters
Media Filtration	Pre-Oxidant UsePre-Oxidant TypePre-Oxidant Dose	 Filter Media Type(s) Filter Bed Depth(s) Filter Bed L/d Ratio Filtration Rate Abiotic vs. Biological 	
Membrane Filtration	Backwash PracticesChemical Cleaning Practices	Pore Size Distribution	

Because these are intermittent practices, WHEN sampling occurs is important.

Unit Process(es)	Operational Parameters	Design Criteria / Information	Water Quality Parameters
Media Filtration	Pre-Oxidant UsePre-Oxidant TypePre-Oxidant Dose	 Filter Media Type(s) Filter Bed Depth(s) Filter Bed L/d Ratio Filtration Rate Abiotic vs. Biological 	
Membrane Filtration	Backwash PracticesChemical Cleaning Practices	Pore Size Distribution	
General / Overall	• Flow	Open Air IntakesUpstream PumpingUpstream Oxidants	

Dissecting the Difficulties

Process Design Criteria & Information

3. Extensive array of variables

Process Operational Parameters

Water Quality Parameters

Dissecting the Difficulties

3. Extensive array of variables

Process Design
Criteria & Information

Process Operational Parameters

Water Quality Parameters

Microplastics Attributes

Aspects of Interest

- Enumeration
- Mass concentration

Just one or both of these apply to almost every other contaminant

Aspects of Interest

- Enumeration
- Mass concentration
- Morphology
- Polymer type
- Surface roughness
- Surface charge
- Surface area
- Size

But there are many other potentially applicable attributes of microplastics

Aspects of Interest

- Enumeration
- Mass concentration
- Morphology
- Polymer type
- Surface roughness
- Surface charge
- Surface area
- Size

Any of these attributes could potentially influence treatment or health effects.

Aspects of Interest

- Enumeration
- Mass concentration
- Morphology
- Polymer type
- Surface roughness
- Surface charge
- Surface area
- Size

Microplastics are unlike any other contaminant.

Dissecting the Difficulties

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

Three Core Sets of Challenges

- 1. Cumbersome sampling
- 2. Time- and labor-intensive analysis (for enumeration methods)
- 3. Extensive array of variables

Studying microplastics is inherently challenging.

- Studying microplastics is inherently challenging.
- ✓ There is a lot to learn about microplastics fate, transport, and removal efficacy in water treatment systems.

- Studying microplastics is inherently challenging.
- ✓ There is a lot to learn about microplastics fate, transport, and removal efficacy in water treatment systems.
- ✓ WRF 5185 represents a significant step toward this goal...

- Studying microplastics is inherently challenging.
- ✓ There is a lot to learn about microplastics fate, transport, and removal efficacy in water treatment systems.
- ✓ WRF 5185 represents a significant step toward this goal...
 ...but many more steps will ultimately be necessary.

- Studying microplastics is inherently challenging.
- ✓ There is a lot to learn about microplastics fate, transport, and removal efficacy in water treatment systems.
- ✓ WRF 5185 represents a significant step toward this goal...
 ...but many more steps will ultimately be necessary.
- ✓ The drinking water community will need to be cleverer about characterizing microplastics removal and associated regulations (if/when applicable) than for any other contaminant.

Thank you for your attention!

Brent Alspach, PE, BCEE VP & Director of Applied Research

- Murrieta, CA
- **9** +1 (760) 602-3828
- brent.alspach@arcadis.com

