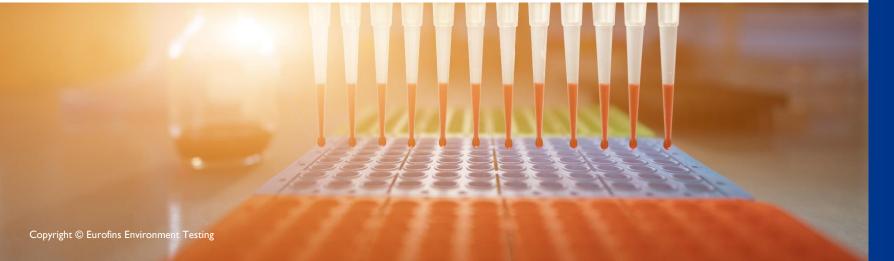
Great Lakes Microplastic Summit

Microplastics Sampling and Analysis

NaCH

October 22nd 2025

Bijan Jafari Microplastics Group Lead

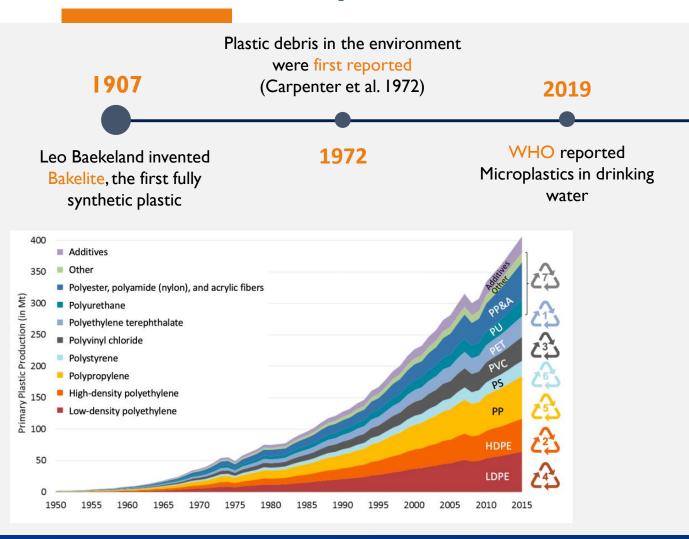

Environment Testing

Bijan

Jafari

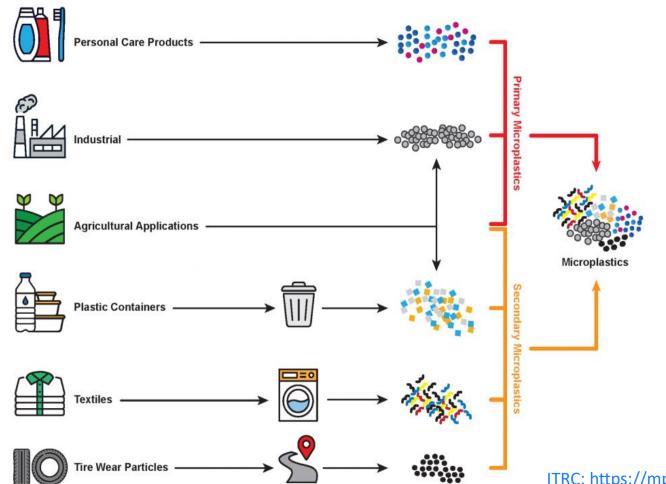
• Microplastic Group Lead

What are Microplastics?


NaCH₂

Environment Testing

What are Microplastics? (1 of 2)

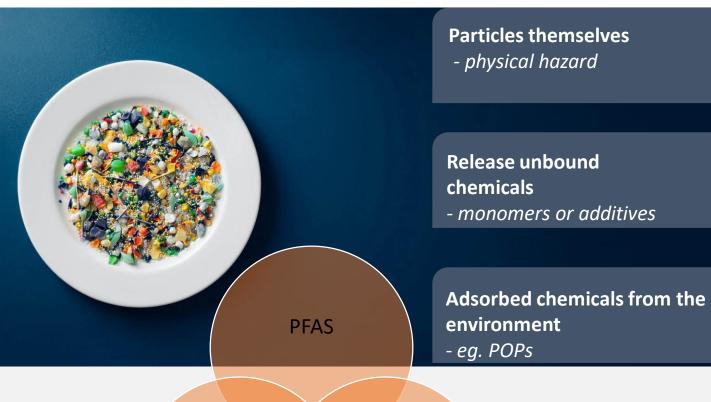

State Water Resources Control Board defines Microplastics in Drinking Water

2021

"...solid **polymeric materials** to which **chemical additives** or other substances may have been added, which are particles which have at least **three dimensions** that are greater than **I nm and less than 5,000 micrometres** (µm)..."

What are Microplastics? (2 of 2)

Our plastics Problem:


9.2 billion tons of plastics produced up until
 2022

How do Microplastics end up in our environment?

- There are also intentionally added
 Microplastics (Primary Microplastics)
- 2. Only less than 10 % recycled the rest landfilled or if mismanaged leaked into the environment as plastic never disappears; it just breaks down into smaller and smaller pieces called Microplastics (Secondary Microplastics)

ITRC: https://mp-1.itrcweb.org/environmental-distribution-fate-and-transport/

Toxicity of Microplastics

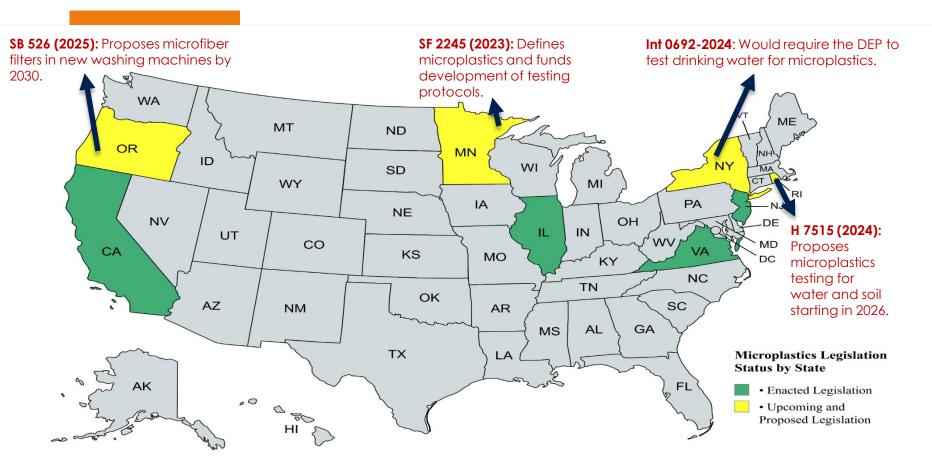
Microplastics Phthalates

Particle Size

Smaller Larger

Molecular Damage (Translocation)

- Inflammation
- Reactive oxygen generation
- Neurological


Physical Damage

- Food Dilution
- Gastrointestinal obstruction
- Irritation/injury

Volume Dependent

Surface Area Dependent

Legislations on Microplastics

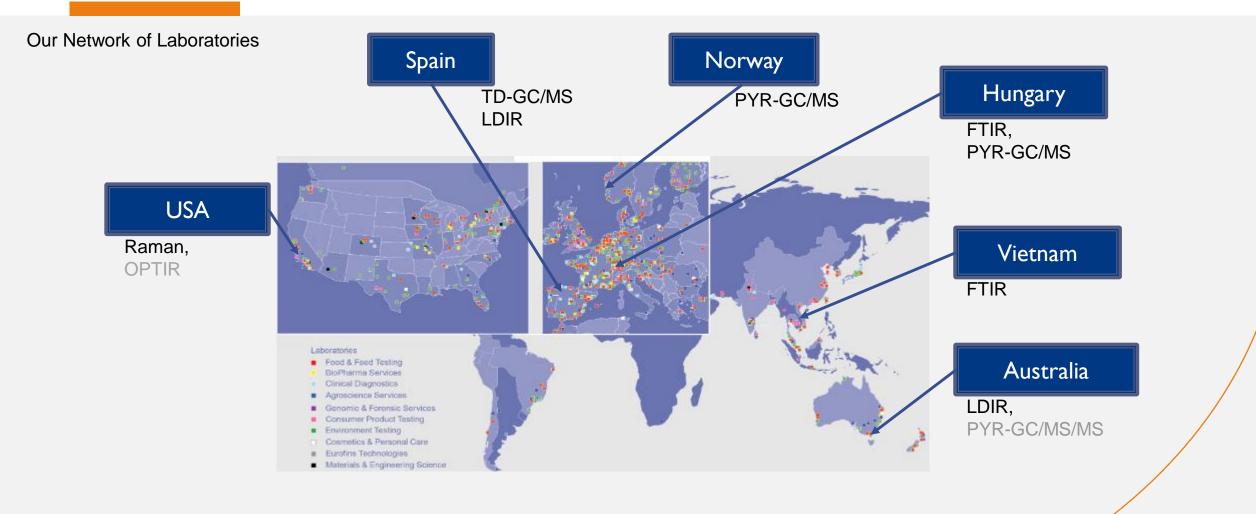
Passed Legislation

California:

- SB 1422 (2018): Sets definition and testing methods for microplastics in drinking water.
- **SB** 1263 (2018): Launches a statewide microplastics strategy.
- SB 1147 (2023): Requires health risk studies of microplastics in water.
- AB 823 (2024): Bans plastic microbeads in cosmetics, cleaning products, and coatings.

New Jersey:

 A1816 (2014): Bans microbeads in personal care products.


Virginia:

• HB 33 (2024): Creates a work group to study microplastics in drinking water.

Illinois:

 SB 1563 (2023): Requires draft testing regulations for microplastics in water by July 1, 2025.

Growing MP Capabilities

Targets:

- Polyamide (PA)
- Polycarbonate (PC)
- Polyethylene (PE)
- Polyethylene Terephthalate (PET)
- Polymethyl Methacrylate (PMMA)
- Polypropylene (PP)
- Polyurethane (PU)
- Polyvinyl Chloride (PVC)
- Polystyrene (PS)

Environmental samples

Potable Water, Surface Water, Ground Water, Wastewater, Sewage, Soil, Biosolids, Compost, Biochar, Sand, Sediment, Air

Food and Food Products

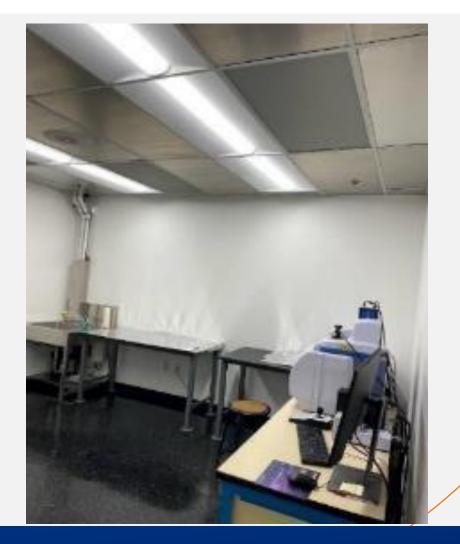
Oysters, Mussels, Fish Tissue, Cheese, Milk, Salt, Infant Formula

Cosmetics and Personal Care Products

Creams, Body washes, Face and Body Scrubs,

Consumer Products

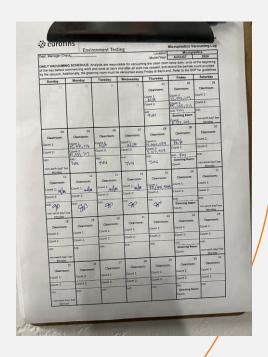
Eye Drops, Packaging Materials, Clothing, Washing Machine Effluent


How to Build a Microplastic lab?

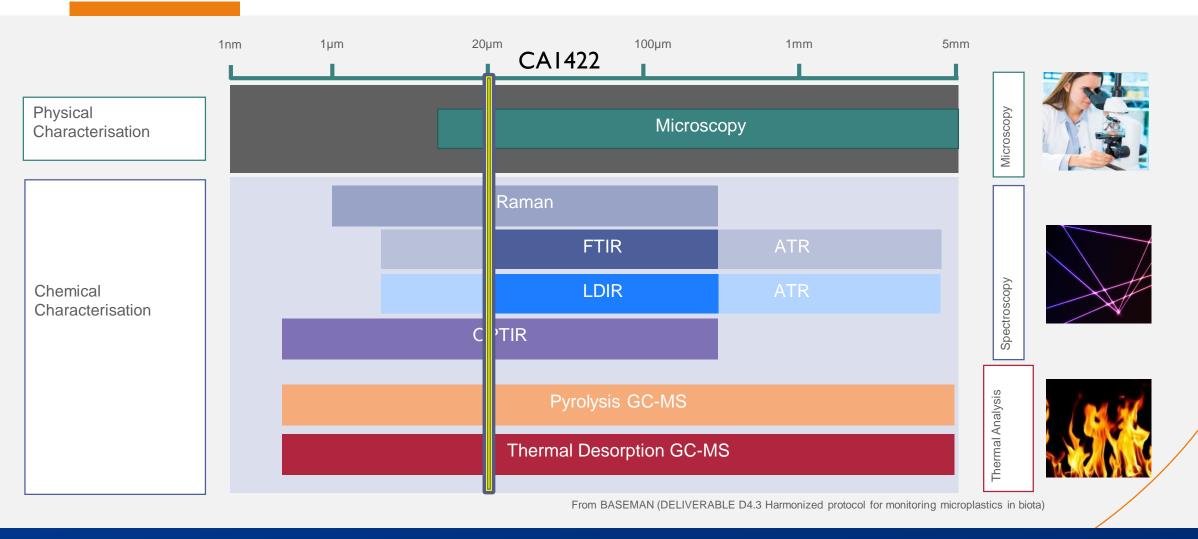
How It Started...

How It's Going...

Copyright © Eurofins Environment Testing



Engineering Controls


Microplastic Tool Belt

- Quality Control
 - Cleanroom
 - QA/QC Practices
- Instrumentation
 - Raman
 - O-PTIR
 - Next GenerationSpectroscopy...?

Methodologies

How Raman Works

Laser Light Source

A monochromatic laser (single color) is aimed at the sample.

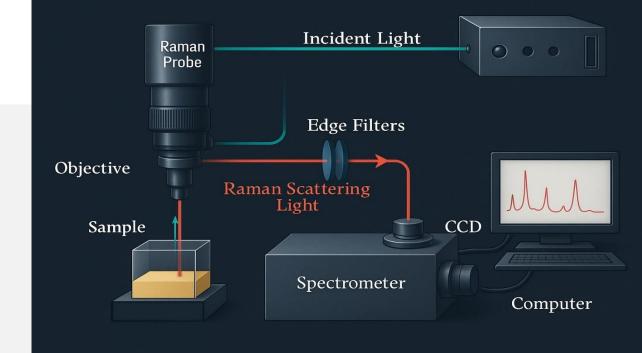
Interaction with the Sample

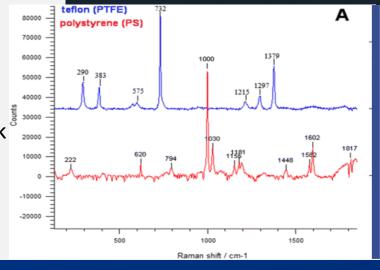
Most of the light bounces off with no energy change — this is called Rayleigh scattering.

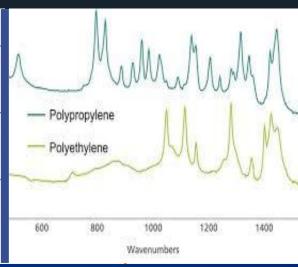
Raman Scattering

A very small amount of light changes energy due to vibrations in the molecules — this is Raman scattering, and it gives useful information about the sample.

Light Collection

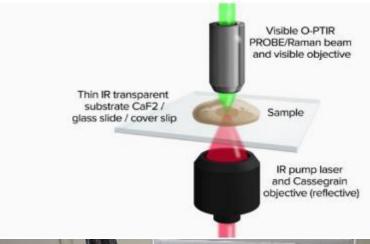

Both types of scattered light are collected using lenses or mirrors.

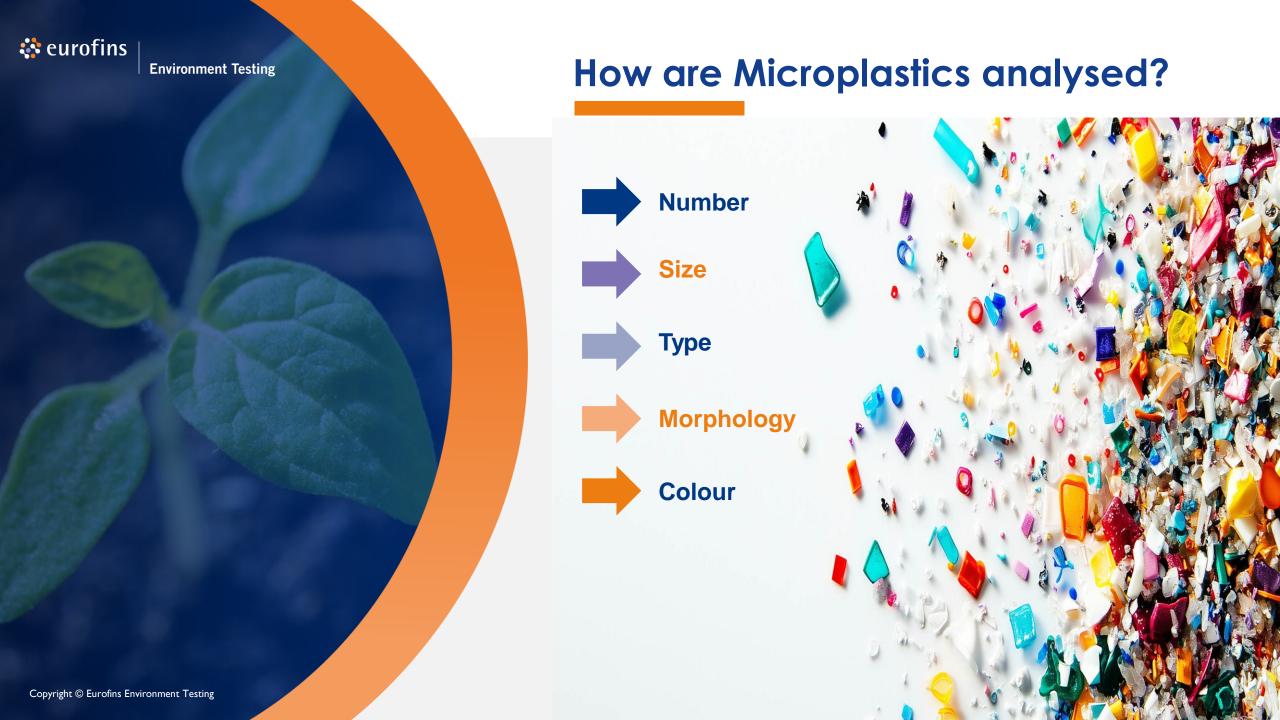

Filtering


A filter removes the strong Rayleigh light so only the weak Raman signal is left.

Detection

The Raman light goes to a detector (like a CCD), and a Raman spectrum is created from the data.




Environment Testing

OPTIR

- Sub-500 nm spatial resolution Essential for detecting nanoplastics.
- Counter-propagating laser setup The IR laser comes from below, while the 532 nm probe laser comes from above, enhancing spatial resolution and sensitivity.
- Minimized background interference Reduces optical artifacts for cleaner spectral data.
- Efficient detection of photothermal effects The 532 nm laser detects tiny thermal expansions, allowing precise chemical identification.
- Simultaneous IR and Raman acquisition Eliminates fluorescence interference and provides richer chemical data.
- Supports advanced filters Including autofluorescence for enhanced contrast.

How are Microplastics analysed?

How Do You Ship Samples?

eurofins

Microplastics Cooler Packing Instructions

For nonstandard samples or known hazards, please contact your project manager prior to shipping. All microplastic samples should be segregated into their own coolers for shipment back to the laboratory.

Packing the Cooler

- 1. Insert absorbent pad.
- 2. Add plastic liner and add all contents into this liner.
- 3. Insert cardboard box.
- 4. Place the cardboard box with the samples into the cooler
- 5. Place paper between the bottles.

- No ice needed
- Cardboard over plastic
- ALL samples are rinsed with MP-free water prior to extraction

Microplastics Cooler Packing Instructions

Instructions for sending samples to Eurofins Environment Testing

Securing the Cooler

- 1. Twist or tie plastic liner closed.
- 2. Place Chain of Custody in the cooler.
- 3. Send back the shipping order form in the cooler.
- Secure return address label (which has project ID and barcode), to the inside lid of the cooler and secure with tage.

Prepare and Arrange to Ship

- Make arrangements with your shipper to pick up the coolers.
- Add any appropriate labels like RUSH or Custody Seals to outside of cooler.
- Securely add new air bill to luggage tag on cooler for return to lab.
- 4. Close lid and tape shut.
- 5. Provide cooler to the shipper.

Eurofins Environment Testing - Env. Marketing@ET. EurofinsUS.com - EurofinsUS.com/Env

Typical Sampling Media- What do you get in the field?

Pre-treated I liter bottle.

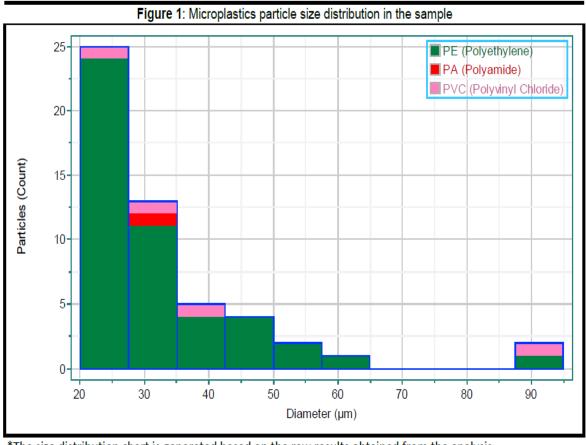
Metal Cap with Aluminum Foil Liner

Environmental Water

Consumer products in original packaging

Typical Aqueous Extraction

What Does a Report Look Like? (1 of 3)



Environment Testing

Eurofins Sacramento Microplastics Analytical Report

Table 1: Total numbers of Microplastics Particles Detected

Client Sample ID:						
Matrix:	Water					
Lab Sample ID:						
Date Collected:		6/24/2025	5			
Date/Time Prepared:	7/	02/2025 - 0	5:17			
Preparation Batch:		320-86101	9			
Date/Time Analyzed:	7/20/2025 - 14:21					
Analytical Batch:	320-861266					
Sample volume analyzed (mL):		996.4				
Microplastics	Raw Result (#)	Unit	Final Result (#)	RL	MDA	Unit
Polyethylene (PE)	47	Particles	47	20	10	MPs/L
Polypropylene (PP)	0	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polystyrene (PS)	0 Particles		<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polyvinyl Chloride (PVC)	4 Particles <m< td=""><td><mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<></td></m<>		<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polyethylene Terephthalate (PET)	0	Particles <mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>		20	10	MPs/L
Polycarbonate (PC)	0	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polymethyl Methacrylate (PMMA)	0	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polyamide (PA)	1	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polyurethane (PU)	0	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Polytetrafluoro Ethylene (PTFE)	0	Particles	<mda< td=""><td>20</td><td>10</td><td>MPs/L</td></mda<>	20	10	MPs/L
Total	52 Particles 47				MPs/L	

^{*}The size distribution chart is generated based on the raw results obtained from the analysis.

What Does a Report Look Like? (2 of 3)

Environment Testing

Eurofins Sacramento Microplastics Analytical Report

Table 2: Method Blank Results

Lab Sample ID:	MB 320-844874				
Matrix:	Water				
Date/Time Prepared:	4/09/2025 - 8:00				
Preparation Batch:	320-844874				
Date/Time Analyzed:	4/11/2025 - 7:38				
Analytical Batch:	320-845455				
Volume analyzed (mL):	1000				
Microplastics	MB Result	BDL	RL	MDA	Unit
Polyethylene (PE)	1	8.7	20	10	MPs/L
Polypropylene (PP)	0	3.0	20	10	MPs/L
Polystyrene (PS)	0	3.0	20	10	MPs/L
Polyvinyl Chloride (PVC)	0	3.0	20	10	MPs/L
Polyethylene Terephthalate (PET)	0	3.0	20	10	MPs/L
Polycarbonate (PC)	0	3.0	20	10	MPs/L
Polymethyl Methacrylate (PMMA)	0	3.0	20	10	MPs/L
Polyamide (Nylon 6) (PA)	0	3.0	20	10	MPs/L
Polyurethane (PU)	0	3.0	20	10	MPs/L
Polytetrafluoro Ethylene (PTFE)	0	3.0	20	10	MPs/L
Total	1				MPs/L

Table 3: Laboratory Control Sample Results

Lab Sample ID:	LCS 320-844874				
Matrix:	Water				
Date/Time Prepared:	4/09/2025 - 8:05				
Preparation Batch:	320-844874				
Date/Time Analyzed:	4/11/2025 - 8:09				
Analytical Batch	320-845455				
Volume analyzed (mL):	1000				
Analyte	Spike Added	LCS Result	Unit	%Rec	%Rec Limits
Polyethylene; 20-27 μm	50	32	MPs/L	64	50-150
Poly (Methyl Methacrylate) 212- 250 µm	10	9	MPs/L	90	50-150

What Does a Report Look Like? (3 of 3)

	Diameter	Image	Spectrum	Family	Class	HQI
Filter Min					0	
Filter Max						
√1	49.9			SACRAMENTO	PC (Polycarbonate)	98.4
√2	54.1	7	~ mullimen	SACRAMENTO	PET (Polyethylene Terephth	65.4
√3	34.3	5		SACRAMENTO	PET (Polyethylene Terephth	71.5
√ 4	37.9			SACRAMENTO	PET (Polyethylene Terephth	87.8
√5	63.1	*	~	SACRAMENTO	PET (Polyethylene Terephth	90.1
√6	22.4			SACRAMENTO	PA (Polyamide)	68.7
√7	21.4		Longe	SACRAMENTO	PE (Polyethylene)	60.6
√8	21.4		Lunary 1	SACRAMENTO	PE (Polyethylene)	63.5
√9	26.7		low M	SACRAMENTO	PE (Polyethylene)	64.9
√ 10	32.9	4	Lowellmon	SACRAMENTO	PE (Polyethylene)	67.2
√ 11	46.6	· 🔑	~ ML	SACRAMENTO	PE (Polyethylene)	72.6

Real-World examples!

NaCH.

Environment Testing

A Water Bottle Story: Stress Testing & Microplastics (1 of 4)

Shaking

Heat

Capping

UV

Handling

Why Test Bottled Water (2 of 4)

Why

- Bottled water is widely consumed
- Consumers handle, reuse, and store bottles in various ways
- Regulations & research usually focus on water content, less on packaging behavior

Limitations

- Only one bottle brand tested
- No replicates (one bottle per scenario)
- Pilot design, not regulatory-level data
- A starting point, not a final conclusion

How We Designed the Study (3 of 4)

Bottle

Filter

Stress

Re-filter

Raman analysis

Stress Scenarios Tested

- Hand-pressing ×10 (handling)
- Open/close cap ×10 (capping)
- Shaking ×100 (running/workout)
- UV exposure 2 days (sunlight)
- Heat exposure 2 days (in-car)

Microplastics Released Under Everyday Stress (3 of 4)

Handling

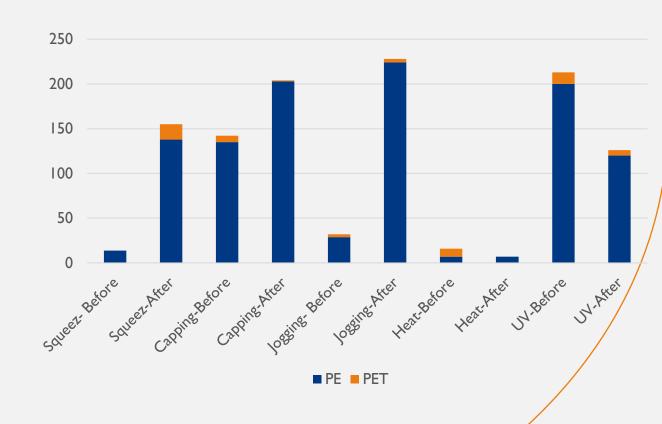
• PE surged $14 \rightarrow 203$. PET appeared.

Capping

• PET increased $7 \rightarrow 17$

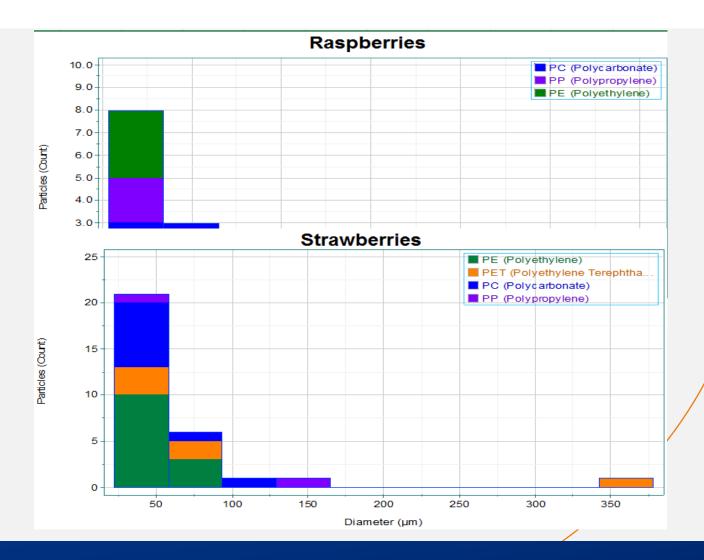
Shaking

• PE jumped 29 \rightarrow 224 (largest effect).

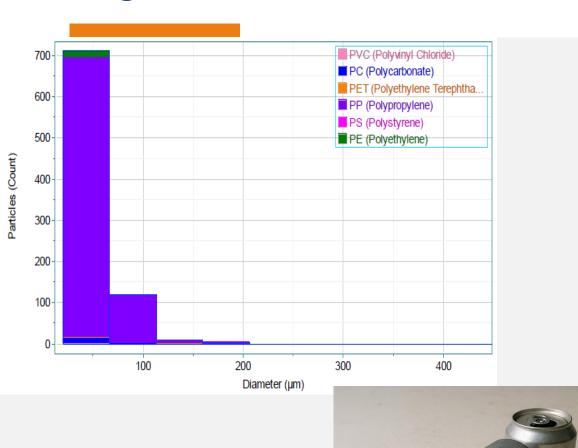

Heat

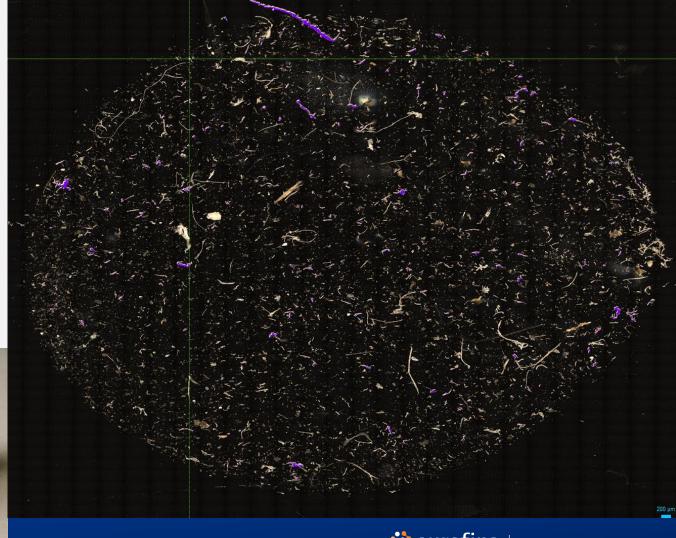
• Totals dropped (16 \rightarrow 7). Possible adhesion or fragmentation <20 μ m.

UV


• Totals decreased (217 \rightarrow 128). Suggests UV degradation into sub-20 μm fraction.

Microplastic Particles Before vs After




Detection of Microplastics in Packaged Fresh Berries

- Two berry types (raspberry and strawberry) were analyzed for microplastics. ~40g of each were taken from clamshell plastic containers.
- Raman spectroscopy was used to detect particles in the 20–500 µm range.
- The raspberry sample contained 16 particles, mainly Polycarbonate (PC) and Polyethylene (PE).
- The strawberry sample had 30 total particles, with PE as the most abundant polymer, followed by PET, PC, and PP.
- A blank sample showed a background of 7 particles, including 3 PE, 2 PET, and 2 PC, serving as a control to monitor potential contamination during analysis.
- Most particles were observed in the 20–80 μm size range.
- Polymers detected included: PE, PET, PC, PP

Findings in a Can of Beer

🔅 eurofins **Environment Testing**

Copyright © Eurofins Environment Testing

What Comes Next?

Consumer & Market Shifts

- Demand for "microplastics-safe" products
- Natural fibers & biodegradable alternatives
- Eco-labels and consumer pressure

Global Action

- UN Plastics Treaty includes microplastics
- REACH Annex XVII Entry 78 Compliance
- Circular economy focus: design for recovery
- Wastewater & large-scale capture solutions

Shifting from awareness

accountability

action

